Que	Question		Expected Answers	Marks	Additional Guidance				
1	а	i	Any two from $\checkmark \checkmark$ H ⁺ SO ₄ ²⁻ HSO ₄ ⁻	2 max	DO NOT ALLOW OH^- IGNORE state symbols Charge is essential ALLOW H_3O^+ for H^+ and SO_4^{-2} for SO_4^{2-} One answer incorrect = 1 mark max Two answers incorrect = 0 marks				
		ii	Effervescence OR fizzing OR bubbling OR gas produced \checkmark K ₂ CO ₃ dissolves OR disappears OR colourless solution is formed \checkmark H ₂ SO ₄ + K ₂ CO ₃ \rightarrow K ₂ SO ₄ + CO ₂ + H ₂ O \checkmark	3	DO NOT ALLOW 'carbon dioxide produced' without 'gas' DO NOT ALLOW incorrectly named gas produced DO NOT ALLOW 'precipitate forms' = CON ALLOW 'it' for K ₂ CO ₃ DO NOT ALLOW mark for 'dissolves' from state symbols in equation DO NOT ALLOW 'potassium' IGNORE state symbols ALLOW ionic equation				
	b	i	$24.6 \times 0.100 = 0.00246$ mol ✓ (2.46 × 10 ⁻³ mol) 1000	1	DO NOT ALLOW 0.0025 as this would lead to 100% in part (iii) DO NOT ALLOW 0.0024 due to incorrect rounding				
		ii	$0.00246 \times 2 = 0.00492 \text{ mol } \checkmark (4.92 \times 10^{-3} \text{ mol})$	1	ALLOW ECF for ans (i) × 2				
		iii	Moles of NaOH in 250 cm ³ = $0.00492 \times \frac{250}{25} = 0.0492 \text{ mol }\checkmark$	3	ALLOW ECF for ans (ii) × 10				
			Mass of NaOH in original sample = $0.0492 \times 40.0 = 1.968 \text{ g} \checkmark$		ALLOW 1.97g ALLOW ECF for moles of NaOH × 40				
			% purity <u>1.968</u> × 100 = 98.4% ✓ 2.00		ALLOW 98.5% (from use of 1.97) ALLOW ECF for $\frac{\text{mass of NaOH}}{2.00} \times 100$ DO NOT ALLOW ECF for 3rd marking point if answer >100% ALLOW ECF for 3rd marking point if answer = 100% ALLOW molar approach for second and third marks i.e. mol of (expected) NaOH in 2.00 g = 2/40 = 0.05(00) mol (0.0492/0.0500) × 100 = 98.4% 1.6% (the percentage of the impurity present) is likely to be 2 marks, but please check 9.84% has not multiplied up by 10 for first marking point is likely to be 2 marks, but please check				
			Total	10					

Qu	esti	on	Expected Answers	Marks	Additional Guidance
2	а		3d 4p ✓	1	Correct order is essential ALLOW '3D'
	b i		A region (within an atom) that can hold (up to) two electrons ✓ (with opposite spin)	1	ALLOW 'can be found' for 'can hold' ALLOW 'area' OR 'volume' OR 'space' for region DO NOT ALLOW 'place' for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'
	ii		11 ✓	1	
	С		18 🗸	1	
	d	i	2nd, 3rd OR 1817, 2745 ✓ 10th, 11th OR 38458, 42655 ✓	2	Mark as pairs IGNORE references to 12th and 13th Three answers with one correct pair = 1 mark Four answers with one correct pair = 1 mark Five answers with both pairs correct = 1 mark Five answers with only one pair correct = 0 marks Six (or more) answers = 0 marks
		ii	$Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-\sqrt{4}}$	2	ALLOW $Al^{2^+}(g) - e^- \rightarrow Al^{3^+}(g)$ for 2 marks ALLOW 1 mark for $Al(g) \rightarrow Al^{3^+}(g) + 3e^-$ as states are correct ALLOW 1 mark for $Al^{2^+}(g) + 2e^- \rightarrow Al^{3^+}(g) + 3e^-$ as states are correct ALLOW 1 mark if symbol of Al is incorrect, but equation is otherwise fully correct. ALLOW e for electron (i.e. no charge) IGNORE states on electron
			Total	8	

Question		Expected Answers					Additional Guidance	
3	(a)	(i)						
				protons	neutrons	electrons	2	mark by row
			²⁴ Mg	12	12	12		
			²⁵ Mg	12	13	12		
			²⁴ Mg line co ²⁵ Mg line co	orrect ✓ orrect ✓				
		(ii)	<u>24 x 78.60 -</u> OR 18.8640	<u>+ 25 x 10.11 + 2</u> 100) + 2.5275 + 2.9	<u>6 x 11.29</u> 354		2	ALLOW two marks for $A_r = 24.33$ with no working out
			$A_{\rm r} = 24.33$	(to 4 sig figs) ✓				ALLOW one mark for ecf from incorrect sum provided final answer is between 24 and 26 and is to 4 significant figures, e.g. 24.3235 × gives ecf of 24.32 ✓
		(iii)	The (weight OR (weighter relative to 1, of (one aton	ed) mean mass ed) average ma /12 th (the mass) n of) ¹² C ✓	s of an atom ss of an atom √		3	 ALLOW The (weighted) mean mass OR (weighted) average mass of an atom OR average atomic mass ✓ compared with (the mass of) carbon-12 ✓ which is 12 ✓ For 1st marking point, ALLOW mean mass of the isotopes OR average mass of the isotopes Do NOT ALLOW the singular: isotope ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (the mass) of one mole / 12 g of carbon-12 ✓

C	Question		Expected Answers	Marks	Additional Guidance
					mass of one mole of atoms \checkmark 1/12th \checkmark the mass of one mole / 12 g of carbon-12 \checkmark
	(b)	(i)	Mg ✓ oxidation number changes from 0 to (+)2 OR oxidation number increases by 2 ✓	2	ALLOW correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg IGNORE electrons
		(ii)	Mg/solid dissolves OR Mg/solid disappears OR (Mg/solid) forms a solution ✓	2	IGNORE metal reacts IGNORE temperature change IGNORE steam produced
			bubbles OR fizzes OR effervesces OR gas produced ✓		DO NOT ALLOW carbon dioxide gas produced DO NOT ALLOW hydrogen produced without gas
	(c)	(i)	$M(MgSO_4) = 120.4 \text{ OR } 120 \text{ (g mol}^{-1}) \checkmark$	2	
			mol MgSO ₄ = $\frac{1.51}{120.4}$ = 0.0125 mol \checkmark		ALLOW 0.013 up to calculator value of 0.012541528 correctly rounded (from $M = 120.4 \text{ g mol}^{-1}$) ALLOW 0.013 up to calculator value of 0.012583333 correctly rounded (from $M = 120 \text{ g mol}^{-1}$)
					ALLOW ecf from incorrect <i>M</i> i.e. $1.51 \div M$
		(ii)	$\frac{1.57}{18.0} = 0.0872(2) \text{ (mol) } \checkmark$	1	ALLOW 0.09 up to calculator value of 0.08722222
		(iii)	x = 7 ✓	1	ALLOW ecf i.e. answer to (ii) \div answer to (i) ALLOW correctly calculated answer from 1 significant figure up to calculator value, ie, x does not have to be a whole number. Likely response = 6.95 \checkmark
			Total	15	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
4	(a)	(i)	mol HCl = $1.50 \times 10^{-2} \checkmark$	2	ALLOW answers to 2 significant figures
			volume HCI(aq) = 75.0 ✓		ALLOW ecf from wrong number of moles i.e. <u>moles of HCI x 1000</u> 0.200 ALLOW one mark for 37.5 (from incorrect 1:1 ratio)
		(ii)	180 ✓	1	No other acceptable answer
	(b)		$\begin{array}{c} CaCO_{3}(s) \longrightarrow CaO(s) + CO_{2}(g) \\ equation \checkmark \\ state symbols \checkmark \end{array}$	2	state symbols are dependent on correct formulae of $CaCO_3$, CaO and CO ₂ DO NOT ALLOW the 'equation mark' if O ₂ is seen on both sides (but note that the 'state symbol mark' may still be accessible)
	(c)	(i)	Ca(OH)₂ ✓	1	IGNORE charges, even if wrong
		(ii)	Ca(NO ₃) ₂ ✓	1	IGNORE charges, even if wrong
			Total	7	

Q	uesti	on			er		Marks	Guidance
Q 5	(a)	on (mass of the i OR mass of the a (the mass of a	sotope c atom com a) ¹² C (at	er compared to 1 npared to 1/12 tom) ✓	/12th 2th ✓	Marks 2	GuidanceALLOW for 12 C: carbon-12 OR C-12 OR C 12 OR 12 CIGNORE reference to average OR weighted mean (ie correct definition of relative atomic mass scores both marks)ALLOW mass of a mole of the isotope/atom with 1/12th ✓ the mass of a mole OR 12 g of carbon-12 ✓ALLOW 2 marks for: 'mass of the isotope OR mass of the atom compared to 12 C atom given a mass of 12.0' ie 'given a mass of 12' communicates the same idea as 1/12th'ALLOW FOR 2 MARKS: mass of the isotope mass of 1/12th mass of carbon - 12ie fraction is equivalent to 'compared to'ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, ie: 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12'
								DO NOT ALLOW mass of ion OR mass of element BUT ALLOW mass of an atom of an element
		(ii)	Both rows co	mpleted c	correctly ✓	1	 1	ALL four entries in table correct for 1 mark
					protons	neutrons		
			iodin	e-127		74		
			iodin	ie-131		78		

Q	Question		er	Marks	Guidance
5	(b)	(FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 91.6 (µg), must be 3 sf, award 2 marks Amount of I ⁻ mark: = 70.0 x 10 ⁻⁶ /126.9 OR = 5.52 x 10 ⁻⁷ \checkmark (mol)	2	If there is an alternative answer, check to see if there is any ECF credit possible FOR ONE MARK ONLY using working below ALLOW 70.0 x 10^{-x} /126.9 OR 5.52 x 10^{-x} (ie wrong conversion of µg and g) ALLOW calculator values which round to 5.52 x 10^{-x} , ie 3 significant figures or more
			Mass of KI = $(5.52 \times 10^{-7}/10^{-6}) \times 166.0$ = 91.6 (µg) must be 3 sf \checkmark		ALLOW ECF for incorrect calculated amount of I ⁻ x 166.0, must be 3 sf ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. Answers with 91.6 x 10^{-x} (ie wrong conversion of µg and g) would get one mark
		(ii)	Ethical implications Some people feel it is wrong to put additives into the national diet OR Dietary issues Food OR diet contains sufficient amounts of iodide ✓	1	ALLOW some people disapprove of additives in their food Assume 'it' refers to KI IGNORE economic reasons ALLOW (excess) potassium OR K ⁽⁺⁾ OR KI is harmful OR toxic ALLOW too much iodine OR iodide OR I ⁽⁻⁾ is harmful OR toxic ALLOW iodine OR iodide OR I ⁽⁻⁾ OR KI is radioactive ALLOW any effect which would be detrimental to human health OR well-being OR eg 'lead to heart problems' ALLOW some table salt already contains iodide (eg sea salt) ALLOW some countries do not have (access to) KI IGNORE references to dangerous OR taste IGNORE responses referring solely to intake going above GDA IGNORE carcinogenic
	(c)	($Cl_2 + 2l^- \rightarrow 2Cl^- + l_2 \checkmark$	1	IGNORE state symbols

Q	uesti	on	er	Marks	Guidance
5	(c)	(i	Two alternative explanations to award the two marks:	2	<i>Quality of Written Communication:</i> 'dipole' OR 'permanent' spelled correctly at least once and in context for marking point 1 in explanation 1
			Explanation 1 ICI has permanent dipole (–dipole) (interactions) AND CI_2 has (only) van der Waals' forces \checkmark		ALLOW 'vdW' for van der Waals' IGNORE references to van der Waals' forces in IC <i>I</i> in explanation 1 DO NOT ALLOW 'dipole–dipole interactions' without reference to these being permanent for marking point 1
			Forces are stronger in IC <i>I</i> ORA OR More energy is needed to overcome forces in IC <i>I</i> ✓ ORA		DO NOT ALLOW marking point 2 for comparison of IC <i>I</i> having stronger ionic OR covalent bonds than C <i>I</i> ₂ <i>Quality of Written Communication</i> – 'electrons' spelled correctly once and used in context for marking point 1 of explanation 2
			Explanation 2 ICI has more electrons ✓ ORA		ALLOW I has more electrons
			Stronger van der Waals' forces in IC <i>I</i> (than in C <i>I</i> ₂) ORA OR More energy is needed to overcome van der Waals' forces in IC $I \checkmark$ ORA		ALLOW more van der Waals' forces ALLOW 'vdW' for van der Waals'
			Total	9	

Q	Question		er	Marks	Guidance		
6	(a)		Add (aqueous) silver nitrate OR AgNO ₃ OR Ag ⁺ ions ✓	2	IGNORE references to nitric acid DO NOT ALLOW references to any other additional reagent added to silver nitrate for marking point 1		
			white AND precipitate ✓		 ALLOW 'solid' OR 'ppt' for 'precipitate'. Both colour AND state is needed. IGNORE references to solubility in ammonia for marking point 2 if colour of precipitate is stated BUT ALLOW 'dissolves in dilute ammonia' if no colour of precipitate is given DO NOT ALLOW marking point 2 if additional reagent leads to invalid test 		
	(b)		 The mixture effervesced OR fizzed OR bubbled OR produced a gas ✓ X is CaCO₃ OR calcium carbonate ✓ 	2	ALLOW CaO would not fizz IGNORE name of gas		
	(c)	(i)	Contains water (of crystallisation) ✓	1	ALLOW 'with water' OR 'has water' DO NOT ALLOW 'in solution' OR 'in water'		
		(ii)	Working must be marked first 219.1 – 111.1 = 108 ✓ 108/18 (= 6) AND CaC <i>l</i> ₂•6H₂O ✓	2	ALLOW $CaCI_2(H_2O)_6$ ALLOW $CaCI_26H_2O$ (ie no 'dot') ALLOW [219.1 – (40.1 + 2 x 35.5)] / 18 AND $CaCI_2\bullet 6H_2O$ for two marks ALLOW ECF for incorrectly calculated mass of H_2O / 18 provided final answer is rounded to nearest whole number for marking point 2		

Q	uesti	on	er	Marks	Guidance
6	(d)		$\begin{bmatrix} Ca \end{bmatrix}^{2+} \begin{bmatrix} c \\ c \end{bmatrix}^{-} \\ $	2	 For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW 2[CI⁻] 2[CI]⁻ [CI⁻]₂ (brackets not required) DO NOT ALLOW [Cl₂]⁻ [Cl₂]²⁻ [2CI]²⁻ [Cl]₂⁻
	(e)		Ba is more reactive than Ca \checkmark ORA Br ₂ is less reactive than C $l_2 \checkmark$ ORA	2	 ALLOW reactivity increases down Group 2 ORA Provided Ca and Ba have been identified as Group 2 elements ALLOW reactivity decreases down Group 7 ORA Provided C<i>I</i> and Br have been identified as Group 7 elements ALLOW one mark for both sentences if no ascribing to groups ALLOW Br for Br₂ and C<i>I</i> for C<i>I</i>₂ DO NOT ALLOW Br⁻ for Br₂ OR C<i>I</i>⁻
			Total	11	